Feature Weighting for Segmentation
نویسندگان
چکیده
This paper proposes the use of feature weights to reveal the hierarchical nature of music audio. Feature weighting has been exploited in machine learning, but has not been applied to music audio segmentation. We describe both a global and a local approach to automatic feature weighting. The global approach assigns a single weighting to all features in a song. The local approach uses the local separability directly. Both approaches reveal structure that is obscured by standard features, and emphasize segments of a particular size.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملStudy on Image Retrieval Method of Integrating Color and Texture
The retrieval using single feature has a certain limitation, which fails to comprehensively describe an image. Aiming at such retrieval defect, this paper proposes an image retrieval method integrating color and texture. Firstly, carry out image segmentation with uniformly-spaced method, and then extract color feature of each segmentation with weighting processing done; and then, extract textur...
متن کاملUnsupervised Learning of Prototypes and Attribute Weights Summary
In this paper, we introduce new algorithms that perform clustering and feature weighting simultaneously and in an unsupervised manner. The proposed algorithms are computationally and implementation ally simple, and learn a different set of feature weights for each identified cluster. The cluster dependent feature weights offer two advantages. First, they guide the clustering process to partitio...
متن کامل